Dicerandrol B: a natural xanthone dimer induces apoptosis in cervical cancer HeLa cells through the endoplasmic reticulum stress and mitochondrial damage.

ONCOTARGETS AND THERAPY(2019)

引用 8|浏览3
暂无评分
摘要
Background Dicerandrol B is a natural antitumor agent that can be isolated from the endophytic fungus, Phomopsis sp. The present study investigated the effects of dicerandrol B on human cervical cancer HeLa cells. Materials and methods In this study, dicerandrol B was identified by electrospray ionization mass spectrometry and nuclear magnetic resonance spectroscopy. We used MTT to detect the cell viability. Flow cytometry was used to analyze the apoptosis and cell cycle. Western blot was used to examine the expression of related proteins. Results Dicerandrol B was isolated from the endophytic fungus Phomopsis sp. The MTT assay and flow cytometry showed that dicerandrol B significantly inhibited HeLa cell viability and induced G2/M cell cycle arrest. Western blot analysis demonstrated that dicerandrol B increased the levels of GRP78, ubiquitin, cleaved PARP, and Bax protein, decreased the levels of PARP and Bcl-2 protein, and caused an increase in the Bax/Bcl-2 ratio in HeLa cells. Dicerandrol B increased the production of ROS in HeLa cells, which was attenuated by the antioxidant N-acetyl-l-cysteine. Conclusion These findings suggest that dicerandrol B induces apoptosis in human HeLa cells, possibly through the endoplasmic reticulum stress and mitochondrial apoptotic pathways. This suggests that dicerandrol B possesses strong anticancer activity in cervical cancer and provides insight into the underlying mechanisms.
更多
查看译文
关键词
apoptosis,cervical cancer,endoplasmic reticulum stress,mitochondrial damage
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要