谷歌浏览器插件
订阅小程序
在清言上使用

From Linear Molecular Chains to Extended Polycyclic Networks: Polymerization of Dicyanoacetylene

Chemistry of materials(2017)

引用 11|浏览32
暂无评分
摘要
Dicyanoacetylene (C4N2) is an unusual energetic molecule with alternating triple and single bonds (think miniature, nitrogen-capped carbyne), which represents an interesting starting point for the transformation into extended carbon nitrogen solids. While pressure-induced polymerization has been documented for a wide variety of related molecular solids, precise mechanistic details of reaction pathways are often poorly understood and the characterization of recovered products is typically incomplete. Here, we study the highpressure behavior of C4N2 and demonstrate polymerization into a disordered carbon nitrogen network that is recoverable to ambient conditions. The reaction proceeds via activation of linear molecules into buckled molecular chains, which spontaneously assemble into a polycyclic network that lacks long-range order. The recovered product was characterized using a variety of optical spectroscopies, X-ray methods, and theoretical simulations and is described as a predominately sp(2) network comprising "pyrrolic" and "pyridinic" rings with an overall tendency toward a two-dimensional structure. This understanding offers valuable mechanistic insights into design guidelines for next-generation carbon nitride materials with unique structures and compositions.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要