Neuroligin-1 Signaling Controls LTP and NMDA Receptors by Distinct Molecular Pathways.

Neuron(2019)

引用 64|浏览43
暂无评分
摘要
Neuroligins, postsynaptic cell adhesion molecules that are linked to neuropsychiatric disorders, are extensively studied, but fundamental questions about their functions remain. Using in vivo replacement strategies in quadruple conditional knockout mice of all neuroligins to avoid heterodimerization artifacts, we show, in hippocampal CA1 pyramidal neurons, that neuroligin-1 performs two key functions in excitatory synapses by distinct molecular mechanisms. N-methyl-D-aspartate (NMDA) receptor-dependent LTP requires trans-synaptic binding of postsynaptic neuroligin-1 to presynaptic β-neurexins but not the cytoplasmic sequences of neuroligins. In contrast, postsynaptic NMDA receptor (NMDAR)-mediated responses involve a neurexin-independent mechanism that requires the neuroligin-1 cytoplasmic sequences. Strikingly, deletion of neuroligins blocked the spine expansion associated with LTP, as monitored by two-photon imaging; this block involved a mechanism identical to that of the role of neuroligin-1 in NMDAR-dependent LTP. Our data suggest that neuroligin-1 performs two mechanistically distinct signaling functions and that neurolign-1-mediated trans-synaptic cell adhesion signaling critically regulates LTP.
更多
查看译文
关键词
long-term potentiation,LTP,hippocampus,NMDA receptor,synapse,neuroligin,cell adhesion,plasticity,trans-synaptic
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要