Image-guided vibrometry system integrated with spectral- and time-domain optical coherence tomography

APPLIED OPTICS(2019)

引用 5|浏览10
暂无评分
摘要
Vibrometry using optical coherence tomography (OCT) can provide valuable information for investigating either the mechanical properties or the physiological function of biological tissues, especially the hearing organs. Real time imaging of the measured tissues provides structure imaging and spatial guidance for and is thus highly demanded by such vibrometry. However, the traditional time-domain OCT (TD-OCT) systems, although capable of subnanometric vibrometry at large ranges of frequencies, are unable to offer an imaging speed that is high enough to acquire depth-resolved images for guidance. The spectral-domain OCT (SD-OCT) systems, although allowing image-guided vibrometry, are challenged in measuring vibration at high frequencies, particularly for scattering tissue specimens that require longer exposure time to ensure imaging and vibrometry performance. This is because of their limit in the line-scan rate of the CCD, in which the maximum resolvable frequency measured by the SD-OCT is about 1/4 of the CCD line-scan rate in practice. In the present study, we have developed a dual-mode OCT system combining both SD-OCT and TD-OCT modalities for image-guided vibrometry, as the SD-OCT can provide guiding structural images in real-time and, moreover, the TD-OCT can guarantee vibrometry at large ranges of frequencies, induding high frequencies. The efficacy of the developed system in image-guided vibrometry has been experimentally demonstrated using both piezoelectric ceramic transducer (PZT) and ex vivo middle-ear samples from guinea pigs. For the vibrometry of PZT, the minimum detectable vibration amplitude was reached at similar to 0.01 nm. For the vibrometry of the sound-evoked biological samples, both real-time two-dimensional imaging and subnanometric vibrometry were performed at the frequency ranging from 1 to 40 kHz. These results indicate that our dual-mode OCT system is able to act as an excellent vibrometer enabling image-guided high-frequency measurement. (C) 2019 Optical Society of America
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要