Quantum interference and collisional dynamics in excited bounds states revealed by time-resolved pump-high-harmonic-generation-probe spectroscopy.

OPTICS EXPRESS(2019)

引用 6|浏览15
暂无评分
摘要
Ultrafast pump-high-harmonic-generation-probe spectroscopy aims to provide a unique observation window into electronic dynamics while using the infrared or visible light sources. While it is widely accepted that the role of excited bound states in high-harmonic generation is negligible, its dynamics play a significant role in time-resolved pump-probe measurements. Here we show that the time-resolved pump-high-harmonic-generation-probe measurement may reveal a significant (up to 20%) contribution of the quantum interference in electron ionization and recombination with atomic system, with the initial or the final state being an excited bound state. Interplay of two dephasing mechanisms of electron-ion and electron-atom collisions yields decay and recovery of the time-resolved signal, respectively, signifying the role of the quantum interference involving excited bound states in recovery mode. Our theory, based on the density matrix Liouville space formalism, is supported by experimental measurements in argon gas. (C) 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要