Quench, Thermalization, And Residual Entropy Across A Non-Fermi Liquid To Fermi Liquid Transition

PHYSICAL REVIEW RESEARCH(2020)

引用 19|浏览0
暂无评分
摘要
We study the thermalization, after sudden and slow quenches, in an interacting model having a quantum phase transition from a Sachdev-Ye-Kitaev (SYK) non-Fermi liquid (NFL) to a Fermi liquid (FL). The model has SYK fermions coupled to noninteracting lead fermions and can be realized in a graphene flake connected to external leads. A sudden quench to the NFL leads to rapid thermalization via collapse-revival oscillations of the quasiparticle residue of the lead fermions. In contrast, the quench to the FL shows multiple prethermal regimes and much slower thermalization. In the slow quench performed over a time tau, we find that the excitation energy generated has a remarkable intermediate-tau nonanalytic power-law dependence, tau(-eta) with eta < 1, which seemingly masks the dynamical manifestation of the initial residual entropy of the SYK fermions. Our study gives an explicit demonstration of the intriguing contrasts between the out-of-equilibrium dynamics of a NFL and a FL in terms of their thermalization and approach to adiabaticity.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要