谷歌浏览器插件
订阅小程序
在清言上使用

Effect of Selenium Supplements on the Antioxidant Activity and Nitrite Degradation of Lactic Acid Bacteria.

World journal of microbiology & biotechnology incorporating the MIRCEN Journal of applied microbiology and biotechnology/World journal of microbiology & biotechnology(2019)

引用 16|浏览18
暂无评分
摘要
Selenium (Se) is one of the essential trace elements in the human body, and Se-enriched lactic acid bacteria (LAB) can improve the biological utilization value of inorganic Se. The aim of this study was to isolate Se-enriched LAB and study their effects on antioxidant activity and nitrite degradation. The Se-enriched LAB L.P2, which was nitrite-tolerant and could grow in 30 µg/mL sodium selenite (Na2SeO3) medium, was isolated from the traditional fermented Chinese sauerkraut. L.P2 belonged to Lactobacillus plantarum according to the 16S rDNA analysis. The biomass and lactic acid production of L.P2 reached to a maximum (9.52 log CFU/mL and 16.99 mg/mL) when 2.0 µg/mL Na2SeO3 was supplemented in the medium. Additionally, the nitrite degradation rate reached 85.76% when the initial concentration of Na2SeO3 was 2.0 µg/mL. The Se-enriched LAB enhanced the scavenging capacity of hydroxyl radical and superoxide free radical of L.P2 and improved the lipid peroxidation and ion-chelating abilities. Moreover, the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) in Se 4 group (4.0 µg/mL Na2SeO3 was added) reached 48.49 and 50.35 U/mg, respectively. Thus, Se 4 concentration was significantly higher than that of Se 0 group (with no Se added). In particular, SOD and GSH-Px enzymes correlated with nitrite degradation (P < 0.01). Collectively, our results indicate that Se supplementation can enhance the antioxidant capacity of LAB, contribute to its nitrite degradation, and thus may have potential applications in functional foods.
更多
查看译文
关键词
Selenium,Lactic acid bacteria,Antioxidant capacity,Degradation of nitrite
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要