Infection-responsive electrospun nanofiber mat for antibacterial guided tissue regeneration membrane.

Materials Science and Engineering: C(2019)

引用 39|浏览17
暂无评分
摘要
The release of anti-infection drugs in a targeted and efficient manner in response to the attack time and degree of severity of infection is a requirement of new generation implants. Herein, we design an infection-responsive guided tissue regeneration (GTR)/guided bone regeneration (GBR) membrane based on electrospun nanofibers. Polycaprolactone (PCL) nanofiber mats are coated with polydopamine to endow hydroxyl groups on the surface and then functionalized with siloxane to introduce amino groups. Metronidazole (MNA), an antibiotic drug, is esterified and then grafted onto the surface of the modified PCL nanofiber mats via ester linkages. The ester bonds can be selectively hydrolyzed by cholesterol esterase (CE), an enzyme secreted by macrophagocytes accumulated at the site of infection, whose concentration is positively related to the severity of the infection. The drug can be triggered to release from the nanofiber membranes in responsive to the CE. With the increase of the CE concentration, a higher amount of MNA is released from the nanofiber mat, resulting in the enhancement of the antibacterial capability of the MNA-grafted nanofiber mat. The nanofiber mat has good cytocompatibility. This CE-responsive drug delivery system based on the electrospun nanofiber mat is promising as an optimal choice for antibacterial GTR/GBR membrane.
更多
查看译文
关键词
Infection-responsive,Enzyme stimuli,Controlled drug release,Electrospun nanofibers,Antibacterial
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要