Giant Enhancements Of Perpendicular Magnetic Anisotropy And Spin-Orbit Torque By A Mos2 Layer

ADVANCED MATERIALS(2019)

引用 66|浏览31
暂无评分
摘要
2D transition metal dichalcogenides have attracted much attention in the field of spintronics due to their rich spin-dependent properties. The promise of highly compact and low-energy-consumption spin-orbit torque (SOT) devices motivates the search for structures and materials that can satisfy the requirements of giant perpendicular magnetic anisotropy (PMA) and large SOT simultaneously in SOT-based magnetic memory. Here, it is demonstrated that PMA and SOT in a heavy metal/transition metal ferromagnet structure, Pt/[Co/Ni](2), can be greatly enhanced by introducing a molybdenum disulfide (MoS2) underlayer. According to first-principles calculation and X-ray absorption spectroscopy (XAS), the enhancement of the PMA is ascribed to the modification of the orbital hybridization at the interface of Pt/Co due to MoS2. The enhancement of SOT by the role played by MoS2 is explained, which is strongly supported by the identical behavior of SOT and PMA as a function of Pt thickness. This work provides new possibilities to integrate 2D materials into promising spintronics devices.
更多
查看译文
关键词
orbital hybridization, perpendicular magnetic anisotropy, spin-orbit torque, 2D materials
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要