Anderson Localization On The Bethe Lattice Using Cages And The Wegner Flow

PHYSICAL REVIEW B(2019)

引用 12|浏览0
暂无评分
摘要
Anderson localization on treelike graphs such as the Bethe lattice, Cayley tree, or random regular graphs has attracted attention due to its apparent mathematical tractability, hypothesized connections to many-body localization, and the possibility of nonergodic extended regimes. This behavior has been conjectured to also appear in many-body localization as a "bad metal" phase, and constitutes an intermediate possibility between the extremes of ergodic quantum chaos and integrable localization. Despite decades of research, a complete consensus understanding of this model remains elusive. Here we use cages, maximally treelike structures from extremal graph theory; and numerical continuous unitary Wegner flows of the Anderson Hamiltonian to develop an intuitive picture which, after extrapolating to the infinite Bethe lattice, appears to capture ergodic, nonergodic extended, and fully localized behavior.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要