BOFdat: Generating biomass objective functions for genome-scale metabolic models from experimental data.

PLOS COMPUTATIONAL BIOLOGY(2019)

引用 60|浏览39
暂无评分
摘要
Genome-scale metabolic models (GEMs) are mathematically structured knowledge bases of metabolism that provide phenotypic predictions from genomic information. GEM-guided predictions of growth phenotypes rely on the accurate definition of a biomass objective function (BOF) that is designed to include key cellular biomass components such as the major macromolecules (DNA, RNA, proteins), lipids, coenzymes, inorganic ions and species-specific components. Despite its importance, no standardized computational platform is currently available to generate species-specific biomass objective functions in a data-driven, unbiased fashion. To fill this gap in the metabolic modeling software ecosystem, we implemented BOFdat, a Python package for the definition of a Biomass Objective Function from experimental data. BOFdat has a modular implementation that divides the BOF definition process into three independent modules defined here as steps: 1) the coefficients for major macromolecules are calculated, 2) coenzymes and inorganic ions are identified and their stoichiometric coefficients estimated, 3) the remaining species-specific metabolic biomass precursors are algorithmically extracted in an unbiased way from experimental data. We used BOFdat to reconstruct the BOF of the Escherichia coli model iML1515, a gold standard in the field. The BOF generated by BOFdat resulted in the most concordant biomass composition, growth rate, and gene essentiality prediction accuracy when compared to other methods. Installation instructions for BOFdat are available in the documentation and the source code is available on GitHub (https://github.com/jclachance/BOFdat). Author summary The formulation of phenotypic predictions by genome-scale models (GEMs) is dependent on the specified objective. The idea of a biomass objective function (BOF) is to represent all metabolites necessary for cells to double so that optimizing the BOF is equivalent to optimizing growth. Knowledge of the qualitative and quantitative organism's composition (i.e. which metabolites are necessary for growth and in what proportion) is critical for accurate predictions. We implemented BOFdat with the idea that experimental data should drive the definition of the biomass composition. As omic datasets become more available, the possibility of integrating them to obtain a condition-specific biomass composition is in reach and therefore one of the main features of BOFdat. While major macromolecules, coenzymes, and inorganic ions are ubiquitous components across species, several species-specific components exist in the cell that should be accounted for in the BOF. To identify these, we implemented an approach that minimizes the error between experimental essentiality data and GEM-driven prediction. Hence BOFdat provides an unbiased, data-driven approach to defining BOF that has the potential to improve the quality of new genome-scale models and greatly decrease the time required to generate a new reconstruction.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要