谷歌浏览器插件
订阅小程序
在清言上使用

An Efficient Electrode Material for High Performance Solid-State Hybrid Supercapacitors Based on a Cu/CuO/porous Carbon Nanofiber/tio2 Hybrid Composite

Beilstein journal of nanotechnology(2019)

引用 30|浏览3
暂无评分
摘要
A Cu/CuO/porous carbon nanofiber/TiO2 (Cu/CuO/PCNF/TiO2) composite uniformly covered with TiO2 nanoparticles was synthesized by electrospinning and a simple hydrothermal technique. The synthesized composite exhibits a unique morphology and excellent supercapacitive performance, including both electric double layer and pseudo-capacitance behavior. Electrochemical measurements were performed by cyclic voltammetry, galvanostatic charge–discharge and electrochemical impedance spectroscopy. The highest specific capacitance value of 530 F g−1 at a current density of 1.5 A g−1 was obtained for the Cu/CuO/PCNF/TiO2 composite electrode in a three-electrode configuration. The solid-state hybrid supercapacitor (SSHSC) fabricated based on this composite exhibits a high specific capacitance value of 330 F g−1 at a current density of 1 A g−1 with 78.8% capacitance retention for up to 10,000 cycles. At the same time, a high energy density of 45.83 Wh kg−1 at a power density of 1.27 kW kg−1 was also realized. The developed electrode material provides new insight into ways to enhance the electrochemical properties of solid-state supercapacitors, based on the synergistic effect of porous carbon nanofibers, metal and metal oxide nanoparticles, which together open up new opportunities for energy storage and conversion applications.
更多
查看译文
关键词
composite,electrochemical performance,porous carbon nanofiber,solid-state hybrid supercapacitor,supercapacitor,TiO2 nanoparticles
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要