Machine learning for phenotyping opioid overdose events.

Journal of biomedical informatics(2019)

引用 23|浏览38
暂无评分
摘要
OBJECTIVE:To develop machine learning models for classifying the severity of opioid overdose events from clinical data. MATERIALS AND METHODS:Opioid overdoses were identified by diagnoses codes from the Marshfield Clinic population and assigned a severity score via chart review to form a gold standard set of labels. Three primary feature sets were constructed from disparate data sources surrounding each event and used to train machine learning models for phenotyping. RESULTS:Random forest and penalized logistic regression models gave the best performance with cross-validated mean areas under the ROC curves (AUCs) for all severity classes of 0.893 and 0.882 respectively. Features derived from a common data model outperformed features collected from disparate data sources for the same cohort of patients (AUCs 0.893 versus 0.837, p value = 0.002). The addition of features extracted from free text to machine learning models also increased AUCs from 0.827 to 0.893 (p value < 0.0001). Key word features extracted using natural language processing (NLP) such as 'Narcan' and 'Endotracheal Tube' are important for classifying overdose event severity. CONCLUSION:Random forest models using features derived from a common data model and free text can be effective for classifying opioid overdose events.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要