谷歌浏览器插件
订阅小程序
在清言上使用

Mutations in MAGT1 Lead to a Glycosylation Disorder with a Variable Phenotype.

Proceedings of the National Academy of Sciences of the United States of America(2019)

引用 80|浏览30
暂无评分
摘要
Congenital disorders of glycosylation (CDG) are a group of rare metabolic diseases, due to impaired protein and lipid glycosylation. We identified two patients with defective serum transferrin glycosylation and mutations in the MAGT1 gene. These patients present with a phenotype that is mainly characterized by intellectual and developmental disability. MAGT1 has been described to be a subunit of the oligosaccharyltransferase (OST) complex and more specifically of the STT3B complex. However, it was also claimed that MAGT1 is a magnesium (Mg2+) transporter. So far, patients with mutations in MAGT1 were linked to a primary immunodeficiency, characterized by chronic EBV infections attributed to a Mg2+ homeostasis defect (XMEN). We compared the clinical and cellular phenotype of our two patients to that of an XMEN patient that we recently identified. All three patients have an N-glycosylation defect, as was shown by the study of different substrates, such as GLUT1 and SHBG, demonstrating that the posttranslational glycosylation carried out by the STT3B complex is dysfunctional in all three patients. Moreover, MAGT1 deficiency is associated with an enhanced expression of TUSC3, the homolog protein of MAGT1, pointing toward a compensatory mechanism. Hence, we delineate MAGT1-CDG as a disorder associated with two different clinical phenotypes caused by defects in glycosylation.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要