Multi-electron transfer enabled by topotactic reaction in magnetite

Nature Communications(2019)

引用 27|浏览54
暂无评分
摘要
A bottleneck for the large-scale application of today’s batteries is low lithium storage capacity, largely due to the use of intercalation-type electrodes that allow one or less electron transfer per redox center. An appealing alternative is multi-electron transfer electrodes, offering excess capacity, which, however, involves conversion reaction; according to conventional wisdom, the host would collapse during the process, causing cycling instability. Here, we report real-time observation of topotactic reaction throughout the multi-electron transfer process in magnetite, unveiled by in situ single-crystal crystallography with corroboration of first principles calculations. Contradicting the traditional belief of causing structural breakdown, conversion in magnetite resembles an intercalation process—proceeding via topotactic reaction with the cubic close packed oxygen-anion framework retained. The findings from this study, with unique insights into enabling multi-electron transfer via topotactic reaction, and its implications to the cyclability and rate capability, shed light on designing viable multi-electron transfer electrodes for high energy batteries.
更多
查看译文
关键词
Batteries,Science,Humanities and Social Sciences,multidisciplinary
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要