Chrome Extension
WeChat Mini Program
Use on ChatGLM

Phosphorus Doping of Si Nanosheets by Spin-on Dopant Proximity

Electronic Materials Letters/Electronic materials letters(2018)

Cited 7|Views27
No score
Abstract
Low-dimensional silicon (Si) nanostructures have been attracting a significant attention for various applications including electrical, optical, energy devices, and bio-chemical sensors. Two-dimensional Si nanostructures, i.e., Si nanosheets (SiNSs), are promising owing to their extremely large surface area, mechanical flexibility, and band gap modulation. In order to exploit the potentials of SiNSs, the doping of these nanostructures is crucial; however, this has not been yet extensively investigated. In this paper, we report an n-type phosphorus doping of SiNSs using a spin-on dopant proximity technique that was employed to deposit a thin film of phosphosilicate glass by evaporation. Structural and X-ray measurements results reveal that the phosphorus atoms are substitutionally doped and that the crystallinity and structure of the SiNSs are preserved after the doping. Electrical measurements show that the SiNSs are heavily n-type doped. The doping level can be modulated by adjusting the annealing temperature.
More
Translated text
Key words
Silicon nanosheets,Diffusion limited aggregation,Phosphorus doping,Spin on dopant
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined