Towards Surface Diffusion Potential Mapping On Atomic Length Scale

JOURNAL OF APPLIED PHYSICS(2019)

引用 2|浏览0
暂无评分
摘要
The surface diffusion potential landscape plays an essential role in a number of physical and chemical processes such as self-assembly and catalysis. Diffusion energy barriers can be calculated theoretically for simple systems, but there is currently no experimental technique to systematically measure them on the relevant atomic length scale. Here, we introduce an atomic force microscopy based method to semiquantitatively map the surface diffusion potential on an atomic length scale. In this proof of concept experiment, we show that the atomic force microscope damping signal at constant frequency-shift can be linked to nonconservative processes associated with the lowering of energy barriers and compared with calculated single-atom diffusion energy barriers.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要