Holomorphic fractional Fourier transforms.

arXiv: Mathematical Physics(2019)

引用 0|浏览2
暂无评分
摘要
The Fractional Fourier Transform (FrFT) has widespread applications in areas like signal analysis, Fourier optics, diffraction theory, etc. The Holomorphic Fractional Fourier Transform (HFrFT) proposed in the present paper may be used in the same wide range of applications with improved properties. The HFrFT of signals spans a one-parameter family of (essentially) holomorphic functions, where the parameter takes values in the bounded interval $t\in (0,\pi/2)$. At the boundary values of the parameter, one obtains the original signal at $t=0$ and its Fourier transform at the other end of the interval $t=\pi/2$. If the initial signal is $L^2 $, then, for an appropriate choice of inner product that will be detailed below, the transform is unitary for all values of the parameter in the interval. This transform provides a heat kernel smoothening of the signals while preserving unitarity for $L^2$-signals and continuously interpolating between the original signal and its Fourier transform.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要