谷歌浏览器插件
订阅小程序
在清言上使用

Suppression of PDGF induces neuronal apoptosis after neonatal cerebral hypoxia and ischemia by inhibiting P-PI3K and P-AKT signaling pathways.

Brain research(2019)

引用 11|浏览13
暂无评分
摘要
Neonatal hypoxic-ischemic encephalopathy (HIE) always results in severe neurologic dysfunction, nevertheless effective treatments are limited and the underlying mechanism also remains unclear. In this study, we firstly established the neonatal HIE model in the postnatal day 7 SD rats, Zea-Longa score and TTC staining were employed to assess the neurological behavior and infarct volume of the brain after cerebral hypoxia-ischemia (HI). Afterwards, protein chip was adopted to detect the differential proteins in the right cortex, hippocampus and lung, ultimately, PDGF was noticed. Then, immunohistochemistry, immunofluorescence double staining of NeuN/PDGF, and western blot were used to validate the expression level of PDGF in the cortex and hippocampus at 6 hours (h), 12 h and 24 h after HI. To determine the role of PDGF, the primary cortical neurons were prepared and performed PDGF shRNA administration. The results showed that HIE induced a severe behavioral dysfunction and brain infarction in neonatal rats, and the expression of PDGF in right cortex and hippocampus was remarkably increased after HI. Whereas, suppressing PDGF resulted in a significant loss of neurons and inhibition of neurite growth. Moreover, the protein level of P-PI3K and P-AKT signaling pathways were largely decreased following PDGF-shRNA application in the cortical neurons. In conclusion, PDGF suppression aggravated neuronal dysfunction, and the underlying mechanism is associated with inhibiting the phosphorylation of P-PI3K and P-AKT. Together, PDGF regulating PI3K and AKT may be an important panel in HIE events and therefore may provide possible strategy for the treatment of HIE in future clinic trail.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要