Chrome Extension
WeChat Mini Program
Use on ChatGLM

Structural Tailoring of a Novel Fluorescent IRE-1 RNase Inhibitor to Precisely Control Its Activity.

Journal of medicinal chemistry(2019)

Cited 7|Views14
No score
Abstract
Activation of the IRE-1/XBP-1 pathway has been linked to many human diseases. We report a novel fluorescent tricyclic chromenone inhibitor, D-F07, in which we incorporated a 9-methoxy group onto the chromenone core to enhance its potency and masked the aldehyde to achieve long-term efficacy. Protection of the aldehyde as a 1,3-dioxane acetal led to strong fluorescence emitted by the coumarin chromophore, enabling D-F07 to be tracked inside the cell. We installed a photolabile structural cage on the hydroxy group of D-F07 to generate PC-D-F07. Such a modification significantly stabilized the 1,3-dioxane acetal protecting group, allowing for specific stimulus-mediated control of inhibitory activity. Upon photoactivation, the re-exposed hydroxy group on D-F07 triggered the aldehyde-protecting 1,3-dioxane acetal to slowly decompose, leading to the inhibition of the RNase activity of IRE-1. Our novel findings will also allow for spatiotemporal control of the inhibitory effect of other salicylaldehyde-based compounds currently in development.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined