Design and synthesis of novel 1-phenyl-3-(5-(pyrimidin-4-ylthio)-1,3,4-thiadiazol- 2-yl)urea derivatives with potent anti-CML activity throughout PI3K/AKT signaling pathway.

Bioorganic & Medicinal Chemistry Letters(2019)

引用 10|浏览20
暂无评分
摘要
In this investigation, a series of 1-phenyl-3-(5-(pyrimidin-4-ylthio)-1,3,4- thiadiazol-2-yl)urea receptor tyrosine kinase inhibitors were synthesized by a simple and efficient structure-based design. Structure-activity relationship (SAR) analysis of these compounds based on cellular assays led to the discovery of a number of compounds that showed potent activity against human chronic myeloid leukemia (CML) cell line K562, but very weak or no cellular toxicity through monitoring the growth kinetics of K562 cell during a period of 72 h using the real-time live-cell imaging. Among these compounds, 1-(5-((6-((3-morpholinopropyl) amino)pyrimidin-4-yl)thio)-1,3,4-thiadiazol-2-yl)-3-(4-(trifluoromethyl)phenyl)urea (7) exhibited the least cellular toxicity and better biological activity in cellular assays (K562, IC50: 0.038 μM). Compound 7 also displayed very good induced-apoptosis effect for human CML cell line K562 and exerted its effect via a significantly reduced protein phosphorylation of PI3K/Akt signal pathway by Human phospho-kinase array analysis. In vitro results indicate that 1-phenyl-3-(5-(pyrimidin-4-ylthio)-1,3,4- thiadiazol-2-yl)urea derivatives are lead molecules for further development as treatment of chronic myeloid leukemia and cancer.
更多
查看译文
关键词
1-Phenyl-3-(5-(pyrimidin-4-ylthio)-1,3,4-thiadiazol-2-yl)urea derivatives,Chronic myeloid leukemia (CML),Cellular toxicity,K562 cell,PI3K/Akt signal pathway
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要