CaloCube: A new-concept calorimeter for the detection of high-energy cosmic rays in space☆

NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT(2017)

引用 15|浏览20
暂无评分
摘要
The direct observation of high-energy cosmic rays, up to the PeV region, will increasingly rely on highly performing calorimeters, and the physics performance will be primarily determined by their geometrical acceptance and energy resolution. Thus, it is extremely important to optimize their geometrical design, granularity, and absorption depth, with respect to the total mass of the apparatus, which is among the most important constraints for a space mission. Calocube is a homogeneous calorimeter whose basic geometry is cubic and isotropic, so as to detect particles arriving from every direction in space, thus maximizing the acceptance; granularity is obtained by filling the cubic volume with small cubic scintillating crystals. This design forms the basis of a three-year R&D activity which has been approved and financed by INFN. A comparative study of different scintillating materials has been performed. Optimal values for the size of the crystals and spacing among them have been studied. Different geometries, besides the cubic one, and the possibility to implement dual-readout techniques have been investigated. A prototype, instrumented with CsI(Tl) cubic crystals, has been constructed and tested with particle beams. An overview of the obtained results will be presented and the perspectives for future space experiments will be discussed.
更多
查看译文
关键词
Calorimeter,Cosmic rays,Scintillating crystals
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要