Multimachine Data–Based Prediction of High-Frequency Sensor Signal Noise for Resistive Wall Mode Control in ITER

FUSION SCIENCE AND TECHNOLOGY(2016)

引用 4|浏览84
暂无评分
摘要
The high-frequency noise measured by magnetic sensors, at levels above the typical frequency of resistive wall modes, is analyzed across a range of present tokamak devices including DIII-D, JET, MAST, ASDEX Upgrade, JT-60U, and NSTX. A high-pass filter enables identification of the noise component with Gaussian-like statistics that shares certain common characteristics in all devices considered. A conservative prediction is made for ITER plasma operation of the high-frequency noise component of the sensor signals, to be used for resistive wall mode feedback stabilization, based on the multimachine database. The predicted root-mean-square n = 1 (n is the toroidal mode number) noise level is 10(4) to 10(5) G/s for the voltage signal, and 0.1 to 1 G for the perturbed magnetic field signal. The lower cutoff frequency of the Gaussian pickup noise scales linearly with the sampling frequency, with a scaling coefficient of about 0.1. These basic noise characteristics should be useful for the modeling-based design of the feedback control system for the resistive wall mode in ITER.
更多
查看译文
关键词
Sensor noise,resistive wall mode
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要