谷歌浏览器插件
订阅小程序
在清言上使用

Variations in Amino Acid Composition in Bacterial Single Stranded DNA–binding Proteins Correlate with GC Content

Periodicum biologorum(2017)

引用 2|浏览9
暂无评分
摘要
Background and purposeSSB proteins are essential for the maintenance of the genome in all domains of life. Most bacterial SSBs are active as homotetramers. Each monomer comprises N-terminal domain (OB-fold) which is responsible for ssDNA binding and a disordered C-terminal domain (Ct) with a conserved acidic tail responsible for protein interactions.The variations in these essential proteins prompted us to conduct in silico analyses of the aa composition and properties of two distinct SSB domains in relation to bacterial GC content.Materials and methodsSSB sequences were collected from genomes covering a wide range of GC content from 14 bacterial phyla. The maximum-likelihood (ML) trees were constructed for SSB sequences and corresponding 16S rRNA genes. The aa contents of OB folds and Ct domains were subsequently analysed. ResultsWe showed that SSB proteins followed predicted amino acid (aa) composition as a function of genomic GC content. However, two distinct domains of SSB exhibit significant differences to the expected aa composition. Variations in aa proportion were more prominent in Ct domains. Elevated accumulation of Gly (up to 60 %) and Pro (up to 24 %), significant drop in the proportion of basic Lys and reduction in hydrophobic Leu, Ile and Val were identified in Ct domains of SSBs from high GC genomes. Consequently, this influences the biochemical properties of Ct domains.ConclusionsBased on this comparative study of SSBs we conclude that genomic GC content and two distinct domains with different functional roles participate in shaping aa composition of SSB proteins.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要