Multimodal Characterization of the Morphology and Functional Interfaces in Composite Electrodes for Li–S Batteries by Li Ion and Electron Beams

LANGMUIR(2017)

引用 9|浏览34
暂无评分
摘要
We report the characterization of multiscale 3D structural architectures of novel poly[sulfur-random(1,3-diisopropenylbenzene)] copolymer-based cathodes for high-energy-density Li-S batteries capable of realizing discharge capacities > 1000 mAh/g and long cycling lifetimes > 500 cycles. Hierarchical morphologies and interfacial structures have been investigated by a combination of focused Li ion beam (LiFIB) and analytical electron microscopy in relation to the electrochemical performance and physicomechanical stability of the cathodes. Charge-free surface topography and composition-sensitive imaging of the electrodes was performed using recently introduced low-energy scanning LiFIB with Li+ probe sizes of a few tens of nanometers at 5 keV energy and 1 pA probe current. Furthermore, we demonstrate that LiFIB has the ability to inject a certain number of Li cations into the material with nanoscale precision, potentially enabling control of the state of discharge in the selected area. We show that chemical modification of the cathodes by replacing the elemental sulfur with organosulfur copolymers significantly improves its structural integrity and compositional homogeneity down to the sub-5-nm length scale, resulting in the creation of (a) robust functional interfaces and percolated conductive pathways involving graphitic-like outer shells of aggregated nanocarbons and (b) extended micro- and mesoscale porosities required for effective ion transport.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要