谷歌浏览器插件
订阅小程序
在清言上使用

Influence of Ni-Zn-Cu-ferrite on Electroactive Β-Phase in Poly(vinylidene Fluoride)-Ni-zn-cu-ferrite Nanocomposite Film: Unique Metamaterial for Enhanced Microwave Absorption

Journal of applied physics(2018)

引用 19|浏览12
暂无评分
摘要
In search of a new radar absorbing material for microwave applications, the nanoparticles of Ni0.40Zn0.40Cu0.20Fe2O4 (NZCF) are successfully incorporated in the matrix of poly(vinylidene fluoride) (PVDF), and this NZCF-PVDF nanocomposite system has evolved as the potential one for absorbing radiations in the microwave/GHz frequency range. The enhancement of electroactive β-phase of PVDF has been observed in the NZCF-PVDF nanocomposite system due to the formation of NZCF-PVDF interfaces. Also, the magnetic dipoles of ferrite nanoparticles are present in the same resultant nanocomposite system. Both these factors play a significant role in the interaction of microwave radiation with the medium of the nanocomposite system. The optimization of wave matter interaction leads to the superior reflection loss property of the NZCF-PVDF nanocomposite system. The mutual contributions of both magnetic nano-fillers and electroactive PVDF polymers make this NZCF-PVDF nanocomposite system a unique metamaterial for enhanced microwave absorption. Many articles have been published on polymer-ferrite systems but in true sense the involvement of NZCF-PVDF interfaces as active centres during wave matter interactions has not been considered by anyone else. Reflection loss property of all the NZCF-PVDF nanocomposite films has been observed, and a maximum of −49.7 dB at 13.2 GHz is obtained for 10 wt. % of NZCF loaded PVDF nanocomposite films. This is the highest reflection loss ever found in these types of polymer based metamaterials. Also, the high reflection loss in NZCF-PVDF nanocomposite films (X and Ku bands) makes it the most suitable one for the applications in the area of microwave devices.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要