The unified maximum a posteriori (MAP) framework for neuronal system identification

arXiv: Neurons and Cognition(2018)

引用 23|浏览51
暂无评分
摘要
The functional relationship between an input and a sensory neuronu0027s response can be described by the neuronu0027s stimulus-response mapping function. A general approach for characterizing the stimulus-response mapping function is called system identification. Many different names have been used for the stimulus-response mapping function: kernel or transfer function, transducer, spatiotemporal receptive field. Many algorithms have been developed to estimate a neuronu0027s mapping function from an ensemble of stimulus-response pairs. These include the spike-triggered average, normalized reverse correlation, linearized reverse correlation, ridge regression, local spectral reverse correlation, spike-triggered covariance, artificial neural networks, maximally informative dimensions, kernel regression, boosting, and models based on leaky integrate-and-fire neurons. Because many of these system identification algorithms were developed in other disciplines, they seem very different superficially and bear little relationship with each other. Each algorithm makes different assumptions about the neuron and how the data is generated. Without a unified framework it is difficult to select the most suitable algorithm for estimating the neuronu0027s mapping function. In this review, we present a unified framework for describing these algorithms called maximum a posteriori estimation (MAP). In the MAP framework, the implicit assumptions built into any system identification algorithm are made explicit in three MAP constituents: model class, noise distributions, and priors. Understanding the interplay between these three MAP constituents will simplify the task of selecting the most appropriate algorithms for a given data set. The MAP framework can also facilitate the development of novel system identification algorithms by incorporating biophysically plausible assumptions and mechanisms into the MAP constituents.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要