Effects of Cultivar, Nitrogen Rate, and Planting Density on Rice-Grain Quality

AGRONOMY-BASEL(2018)

引用 63|浏览32
暂无评分
摘要
To achieve superior rice-grain quality, more emphasis has been placed on the genetic diversity of breeding programs, although this improvement could be seriously restricted in the absence of comparable agricultural management practices. Nitrogen (N) application and planting density are two important agronomic practices influencing rice growth, yield, and grain quality. This study investigated the four main aspects of rice-grain quality, namely, milling (brown-rice, milled-rice, and head-rice percentage), appearance (length/width ratio, chalky-kernel percentage, and chalkiness), nutrition (protein content), and cooking and eating quality (apparent amylose content, gel consistency, and pasting viscosities) of two rice cultivars (Shendao 47 and Jingyou 586) under four N rates (0, 140, 180, and 220 kg ha(-1)), and three planting densities (25 x 10(4), 16.7 x 10(4), and 12.5 x 10(4) hills ha(-1)) in a field trial from 2015 to 2016. The four main aspects of rice-grain quality were significantly influenced by cultivar. Several aspects were affected by the interactions of N rate and cultivar. No significant interaction between N rate and plating density was detected for all grain-quality parameters. A higher N rate increased the percentages of brown rice and head rice, chalky-kernel percentage, and setback and peak time values, but reduced the length/width ratio, chalkiness, apparent amylose content, gel consistency, and peak-, trough-, and final-viscosity values. These results indicate that the N rate has a beneficial effect on milling and nutritional quality, but a detrimental effect on appearance and cooking and eating quality. Jingyou 586 and Shendao 47 had different responses to planting density in terms of grain quality. Our study indicates that low planting density for Jingyou 586, but a medium one for Shendao 47, is favorable for grain quality.
更多
查看译文
关键词
rice,cultivar,nitrogen rate,planting density,grain quality
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要