From Conventional To Additive Manufacturing: Determining Component Fabrication Feasibility

PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, 2018, VOL 2A(2018)

引用 19|浏览30
暂无评分
摘要
The use of additive manufacturing (AM) for fabricating industrial grade components has increased significantly in recent years. Numerous industrial entities are looking to leverage new AM techniques to enable fabrication of components that were typically manufactured previously using conventional manufacturing techniques such as subtractive manufacturing or casting. Therefore, it is becoming increasingly important to be able to rigorously evaluate the technical and economic feasibility of additively manufacturing a component relative to conventional alternatives. In order to support this evaluation, this paper presents a framework that investigates fabrication feasibility for AM from three perspectives: geometric evaluation, build orientation/support generation, and resources necessary (i.e., cost and time). The core functionality of the framework is enabled on voxelized model representation, discrete and binary formats of 3D continuous objects. AM fabrication feasibility analysis is applied to 34 various parts representing a wide range of manifolds and valves manufactured using conventional manufacturing techniques, components commonly found in the aerospace industry. Results obtained illustrate the capability and generalizability of the framework to analyze intricate geometries and provide a primary assessment for the feasibility of the AM process.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要