Dynamic Trajectory Planning for Failure Recovery in Cable-Suspended Camera Systems

JOURNAL OF MECHANISMS AND ROBOTICS-TRANSACTIONS OF THE ASME(2019)

引用 16|浏览11
暂无评分
摘要
The use of cable-driven parallel robots (CDPR) in real-world applications makes safety a major concern for these devices and a relevant research topic. Cable-suspended camera systems are among the earliest and most common applications of CDPRs. In this paper, we propose a novel after-failure approach for cable-suspended camera systems. This strategy, which is applied after a cable breaks, seeks to drive the end effector, i.e., the camera, toward a safe pose, following an oscillatory trajectory that guarantees positive and bounded tensions in the remaining cables. The safe landing location is optimized to minimize the trajectory time while avoiding collisions with the physical boundaries of the workspace. Results of numerical simulations indicate the feasibility of the proposed approach.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要