谷歌浏览器插件
订阅小程序
在清言上使用

The Borg Cube Simulation: Cosmological Hydrodynamics with CRK-SPH.

ASTROPHYSICAL JOURNAL(2019)

引用 22|浏览56
暂无评分
摘要
A challenging requirement posed by next-generation observations is a firm theoretical grasp of the impact of baryons on structure formation. Cosmological hydrodynamic simulations modeling gas physics are vital in this regard. A high degree of modeling flexibility exists in this space, making it important to explore a range of methods in order to gauge the accuracy of simulation predictions. We present results from the first cosmological simulation using Conservative Reproducing Kernel Smoothed Particle Hydrodynamics (CRK-SPH). We employ two simulations: one evolved purely under gravity, and the other with nonradiative hydrodynamics Each contains 2 x 2304(3) cold dark matter plus baryon particles in an 800 h(-1) Mpc box. We compare statistics to previous nonradiative simulations including power spectra, mass functions, baryon fractions, and concentration. We find self-similar radial profiles of gas temperature, entropy, and pressure and show that a simple analytic model recovers these results to better than 40% over two orders of magnitude in mass. We quantify the level of nonthermal pressure support in halos and demonstrate that hydrostatic mass estimates are biased low by 24% (10%) for halos of mass 10(15) (10(13)) h(-1)M(circle dot). We compute angular power spectra for the thermal and kinematic Sunyaev-Zel'dovich effects and find good agreement with the low-l Planck measurements. Finally, artificial scattering between particles of unequal mass is shown to have a large impact on the gravity-only run, and we highlight the importance of better understanding this issue in hydrodynamic applications. This is the first in a simulation campaign using CRK-SPH, with future work including subresolution gas treatments.
更多
查看译文
关键词
cosmology: theory,hydrodynamics,large-scale structure of universe,methods: numerical
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要