Time-Optimal Trajectory Planning Along Parametric Polynomial Lane-Change Curves With Bounded Velocity And Acceleration: Simulations For A Unicycle Based On Numerical Integration

MODELLING AND SIMULATION IN ENGINEERING(2018)

引用 7|浏览8
暂无评分
摘要
G(2) lane-change path imposes symmetric conditions on the path geometric properties., is paper presents the comparative study of time-optimal velocities to minimize the time needed for traversal of three planar symmetric parametric polynomial lane-change paths followed by an autonomous vehicle, assuming that the neighboring lane is free. A simulated model based on unicycle that accounts for the acceleration and velocity bounds and is particularly simple for generating the time-optimal path parameterization of each lane-change path is adopted. We base the time-optimal trajectory simulations on numerical integration on a path basis under two different end conditions representing sufficient and restricted steering spaces with remarkable difference in allowable maximum curvature. The rest-to-rest lane-change maneuvering simulations highlight the effect of the most relevant path geometric properties on minimal travel time: a faster lane-change curve such as a quintic Bezier curve followed by a unicycle tends to be shorter in route length and lower in maximum curvature to have achievable highest speed at the maximum curvature points., e results have implications to path selection for parallel parking and allow the design of continuous acceleration profile via time scaling for smooth, faster motion along a given path., is could provide a reference for on-road lane-change trajectory planning along a given path other than parametric polynomials for significantly more complex, complete higher-dimensional highly nonlinear dynamic model of autonomous ground vehicle considering aerodynamic forces, tire and friction forces of tire-ground interaction, and terrain topology in real-world.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要