CRK2 enhances salt tolerance in Arabidopsis thaliana by regulating endocytosis and callose deposition in connection with PLDα1

bioRxiv(2019)

引用 1|浏览14
暂无评分
摘要
High salinity has become an increasingly prevalent source of stress to which plants need to adapt. The receptor-like protein kinases (RLKs), including the cysteine-rich receptor-like kinase (CRK) subfamily, are a highly expanded family of transmembrane proteins in plants and are largely responsible for communication between cells and the extracellular environment. Various CRKs have been implicated in biotic and abiotic stress responses, however their functions on a cellular level remain largely uncharacterized. Here we have shown that CRK2 enhances salt tolerance at the germination stage in Arabidopsis thaliana . We identified CRK2 as a negative regulator of endocytosis, under both normal growth conditions and salt stress. We also established that functional CRK2 is required for salt-induced callose deposition. In doing so, we revealed a novel role for callose deposition, in response to increased salinity, and demonstrated its importance for salt tolerance during germination. Using fluorescently tagged proteins we observed specific changes in CRK2s subcellular localization in response to various stress treatments. Many of CRK2s cellular functions were dependent on phospholipase D (PLD) activity, as were the subcellular localization changes. Thus we propose that CRK2 acts downstream of PLD during salt stress to regulate endocytosis and promote callose deposition, and that CRK2 adopts specific stress-dependent subcellular localization patterns in order to carry out its functions.
更多
查看译文
关键词
CRK,receptor-like kinase,salt,phospholipase D,callose,plasmodesmata,calcium,Arabidopsis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要