谷歌浏览器插件
订阅小程序
在清言上使用

A systematic path to non-Markovian dynamics: New generalized FPK equations for dynamical systems under coloured noise excitation with arbitrary correlation function.

arXiv: Mathematical Physics(2018)

引用 23|浏览8
暂无评分
摘要
Determining evolution equations governing the probability density function (pdf) of non-Markovian responses to random differential equations (RDEs) excited by coloured noise, is an important issue arising in various problems of stochastic dynamics, advanced statistical physics and uncertainty quantification of macroscopic systems. In the present work, such equations are derived for a scalar, nonlinear RDE under additive coloured Gaussian noise excitation, through the stochastic Liouville equation. The latter is an exact, yet non-closed equation, involving aver-ages over the time history of the non-Markovian response. This nonlocality is treated by applying an extension of the Novikov-Furutsu theorem and a novel approximation, employing a stochastic Volterra-Taylor functional expansion around instantaneous response moments, leading to efficient, closed, approximate equations for the response pdf. These equations retain a tractable amount of nonlocality and nonlinearity, and they are valid in both the transient and long-time regimes for any correlation function of the excitation. Also, they include as special cases various existing relevant models, and generalize Hanggiu0027s ansatz in a rational way. Numerical results for a bistable nonlinear RDE confirm the accuracy and the efficiency of the new equations. Extension to the multidimensional case (systems of RDEs) is feasible, yet laborious.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要