Effect of Geological Layer Properties on Hydraulic-Fracture Initiation and Propagation: An Experimental Study

SPE JOURNAL(2019)

引用 70|浏览4
暂无评分
摘要
Hydraulic-fracture initiation and propagation in the presence of multiple layers with different mechanical and flow properties are investigated experimentally using a novel fracturing cell. Mixtures of plaster, clay, and hydrostone are used to cast sheet-like and porous test specimens in layers with different configurations and properties. The layered specimens are hydraulically fractured under varying far-field differential stress. Fracture growth is recorded using a high-resolution digital camera. Key frames are subsequently analyzed using digital image correlation (DIC) to reveal microcracks, measure strains, and show other features such as shear-failure events that are difficult to detect with the naked eye. The problem of a hydraulic fracture induced in a soft layer bounded by harder layers is considered. We demonstrate numerous laboratory experiments that reveal a clear tendency for induced fractures to avoid harder bounding layers. This is seen as fracture deflection or kinking away from the harder layers, fracture curving between the harder bounding layers, and fracture tilt from the maximum far-field stress direction. These observations appear to be more pronounced as the contrast in Young's modulus and fracture toughness between the layers increases and/or the far-field differential stress decreases. Moreover, when a fracture is induced in a relatively thin layer, the fracture avoids the harder bounding layers by starting and propagating parallel to the bounding interfaces. Fracture propagation parallel to the bounding layers is also observed in relatively wide layers when the far-field stress is isotropic or very low. A fracture approaching a dipping, harder layer tends to curve away from the hard layer by kinking toward the high side of the interface. Nonplanar fracture trajectories are observed even in homogeneous materials when the far-field differential stress is relatively low. Furthermore, various other fracture behaviors in layered specimens are demonstrated and discussed, such as fracture offsetting at material interfaces, fracture branching and complex fracture trajectories, and shear failure of weakly bonded interfaces.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要