谷歌浏览器插件
订阅小程序
在清言上使用

Digitized Adjoint Method for Inverse Design of Digital Nanophotonic Devices

arXiv: Optics(2019)

引用 23|浏览12
暂无评分
摘要
We present a digitized adjoint method for realizing efficient inverse design of subwavelength nanophotonic devices. We design a single-mode 3-dB power divider and a dual-mode demultiplexer to demonstrate the digitized adjoint method for single-object and dual-object optimizations, respectively. The optimization comprises three stages, a first stage of continuous variation for an analog pattern, a second stage of forced permittivity biasing for a quasi-digital pattern, and a third stage for a multi-level digital pattern. Compared with conventional brute-force method, the proposed digitized adjoint method can improve the design efficiency by about 5 times, and the performance optimization can reach approximately the same level using the ternary pattern. The digitized adjoint method takes the advantages of adjoint sensitivity analysis and digital subwavelength structure and creates a new way for efficient and high-performance design of compact digital subwavelength nanophotonic devices. This method could overcome the efficiency bottleneck of the brute-force method that is restricted by the number of pixels of a digital pattern and improve the device performance by extending a conventional binary pattern to a multi-level one, which may be attractive for inverse design of large-scale digital nanophotonic devices.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要