谷歌浏览器插件
订阅小程序
在清言上使用

Reply to the Comment by Préat and Weber On

Earth and planetary science letters(2019)

引用 2|浏览45
暂无评分
摘要
The Paleoproterozoic sandstones of the ca. 2.1 Ga Francevillian Group, southeast Gabon, host the oldest known redox-controlled high-grade uranium (U) deposits. Uranium-bearing detrital minerals (e.g., monazite) in the Francevillian Group sediments were derived by erosion of Archean basement rocks from the East Gabonian block of the northwestern Congo craton surrounding the Francevillian Basin. They are viewed as primary sources for U, but the nature of these sources remains poorly constrained. Here, U-Pb ages and Hf isotope data for detrital zircon grains are combined with literature geochemical data for igneous rocks from the Archean basement, to characterize the nature, age, and origin of the provenance for the Francevillian Basin and the ultimate source of U for the high-grade uranium deposits.Detrital zircon ages range from ca. 3.1 to 2.6 Ga with a dominant population between ca. 2.90 and 2.80 Ga, suggesting a major contribution from ca. 2.88 to 2.81 Ga high-K granitoids with a limited contribution from ca. 3.1 to 2.84 Ga TTGs and 2.75 to 2.7 Ga granitoids of the East Gabonian block. Most detrital zircon grains share similar depleted-mantle Hf model ages between ca. 3.08 and 3.30 Ga, indicating significant recycling of a Paleoarchean to Mesoarchean crust. We suggest that ca. 2.9 to 2.8 Ga high K, U, and Th granitoids, which reflect hybrid melts of both mantle and crustal parentage were the major detrital sources of U to the Francevillian Basin and, ultimately, for the U deposits. We propose that ca. 2.9 to 2.8 Ga detrital zircons with Hf TDM ages between ca. 3.1 and 3.3 Ga may thus allow for vectoring U deposits in sedimentary basins across the Congo craton.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要