Light-induced confined growth of amorphous Co doped MoSx nanodots on TiO2 nanoparticles for efficient and stable in situ photocatalytic H2 evolution

International Journal of Hydrogen Energy(2019)

引用 26|浏览10
暂无评分
摘要
Amorphous molybdenum sulfide (a-MoSx) prepared by in situ photoreduction method with an abundance of exposed active sites has been identified as an efficient cocatalyst for catalyzing photocatalytic H2 evolution reaction (HER). However, the intrinsic activity of the a-MoSx cocatalyst toward HER is low due to the unfavorable electronic structures of the active sites. Herein, we report a facile light-induced method for the confined growth of transition metal (TM) doped MoSx (a-TM-MoSx) cocatalysts on TiO2 nanoparticles and their catalytic activity for in situ photocatalytic HER. It is found that doping Co into a-MoSx can greatly enhance the activity of resulted a-Co-MoSx cocatalyst for photocatalytic H2 evolution over TiO2 among the transition metal dopants (Co, Ni, Fe, Cu, Zn) tested. The most efficient a-Co-MoSx cocatalyst (Co/Mo = 1/4 and 4 mol% loading) loaded TiO2 (TiO2/a-Co-MoSx) shows a H2 evolution rate of 133.8 μmol h−1, which is 3.3 times higher than that of a-MoSx loaded TiO2 (TiO2/a-MoSx). Moreover, the TiO2/a-Co-MoSx photocatalyst shows excellent recycling H2 evolution stability. The characterization results reveal that a-Co-MoSx cocatalyst can not only effectively capture the photogenerated electrons of TiO2 to greatly enhance the separation efficiency of photogenerated charges but also significantly reduce the overpotential of HER due to the formation of highly active “CoMoS” sites, thus synergistically enhancing the catalytic activity of TiO2/a-Co-MoSx. Moreover, the light-induced growth of a-Co-MoSx on TiO2 is found to readily couple with the in situ photocatalytic HER. Therefore, this work provides a simple and efficient strategy for designing high-performance a-MoSx-based cocatalysts for stable in situ photocatalytic H2 evolution.
更多
查看译文
关键词
TiO2,Amorphous molybdenum sulfide,Transition metals,H2 evolution,Water splitting
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要