Tailoring photoluminescence from MoS2 monolayers by Mie-resonant metasurfaces

ACS Photonics(2019)

引用 81|浏览24
暂无评分
摘要
We experimentally investigate coupling of the photoluminescence (PL) from monolayers of MoS2 to Mie-resonant metasurfaces consisting of silicon nanocylinders. By a systematic variation of the nanocylinder diameter, we sweep the metasurface resonances over the excitonic emission band of monolayer MoS2. We observe strong enhancement, as well as spectral and directional reshaping of the emission. By a comprehensive optical characterization, we unveil the different physical factors, including electronic, photonic, and mechanical influences, responsible for the observed PL changes. Importantly, we show that by geometrical tuning of the nanocylinder resonances, the emission can be tailored from occurring under very large angles to being directed out of the substrate plane. Our results highlight the need and potential of controlling not only the photonic, but also electronic and mechanical environmental factors for tailoring PL from TMD monolayers by integrating them in nanophotonic architectures.
更多
查看译文
关键词
light-emitting metasurfaces,Mie resonances,dielectric nanoantennas,transition metal dichalcogenides,2D materials,excitonic emission
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要