Projected biophysical conditions of the Bering Sea to 2100 under multiple emission scenarios

ICES JOURNAL OF MARINE SCIENCE(2019)

引用 51|浏览26
暂无评分
摘要
A regional biophysical model is used to relate projected large-scale changes in atmospheric and oceanic conditions from CMIP5 to the finer-scale changes in the physical and biological structure of the Bering Sea, from the present through the end of the twenty-first century. A multivariate statistical method is used to analyse the results of a small (eight-member) dynamically downscaled ensemble to characterize and quantify dominant modes of variability and covariability among a broad set of biophysical features. This characterization provides a statistical method to rapidly estimate the likely response of the regional system to a much larger (63-member) ensemble of possible future forcing conditions. Under a high-emission [Representative Concentration Pathway 8.5 (RCP8.5)] scenario, results indicate that decadally averaged Bering Sea shelf bottom temperatures may warm by as much as 5 degrees C by 2100, with associated loss of large crustacean zooplankton on the southern shelf. Under a lower emission scenario (RCP4.5), these effects are predicted to be approximately half their calculated change under the high emission scenario.
更多
查看译文
关键词
Bering Sea,biophysical modelling,climate change,regional modelling
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要