Adaptive Model Predictive Control for Cruise Control of High-Speed Trains with Time-Varying Parameters

JOURNAL OF ADVANCED TRANSPORTATION(2019)

引用 33|浏览19
暂无评分
摘要
The cruise control of high-speed trains is challenging due to the presence of time-varying air resistance coefficients and control constrains. Because the resistance coefficients for high-speed trains are not accurately known and will change with the actual operating environment, the precision of high speed train model is lower. In order to ensure the safe and effective operation of the train, the operating conditions of the train must meet the safety constraints. The most traditional cruise control methods are PID control, model predictive control, and so on, in which the high-speed train model is identified offline. However, the traditional methods typically suffer from performance degradations in the presence of time-varying resistance coefficients. In this paper, an adaptive model predictive control (MPC) method is proposed for cruise control of high-speed trains with time-varying resistance coefficients. The adaptive MPC is designed by combining an adaptive updating law for estimated parameters and a multiply constrained MPC for the estimated system. It is proved theoretically that, with the proposed adaptive MPC, the high-speed trains track the desired speed with ultimately bounded tracking errors, while the estimated parameters are bounded and the relative spring displacement between the two neighboring cars is stable at the equilibrium state. Simulations results validate that proposed method is better than the traditional model predictive control.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要