Reversible perovskite electrocatalysts for oxygen reduction/oxygen evolution.

Kieren Bradley, Kyriakos Giagloglou,Brian E Hayden, Hugo Jungius,Chris Vian

CHEMICAL SCIENCE(2019)

引用 36|浏览16
暂无评分
摘要
The identification of electrocatalysts mediating both the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are prerequisite for the development of reversible fuel cells and rechargeable metal-air batteries. The question remains as to whether a bifunctional catalyst, or a single catalyst site, will exhibit potentials converging to +1.23 VRHE. Transition metal-based perovskites provide tunable catalysts where site substitution can influence both ORR and OER, however substitution in the pseudo-binary phases results in an anti-correlation in ORR and OER activities. We reveal that La x Mn y Ni1-y O3-δ , compositions with lanthanum A-site sub-stoichiometry exhibit reversible activity correlating with the appearance of the Mn3+/Mn4+ redox couple. The Mn3+/Mn4+ couple is associated with Mn4+ co-existing with Mn3+ in the bulk, as La3+ is substituted by Ni2+ at the A-site to create a mixed valent system. We also show that a direct A-site substitution by the Ca2+ cation in La x Ca1-x Mn y O3-δ perovskites also results in the creation of Mn4+, the appearance of the Mn3+/Mn4+ redox couple, and a concomitant reversible activity. These results highlight a general strategy of optimizing oxide electrocatalysts with reversible activity.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要