When deadman theory meets footprint decortication: a suture anchor biomechanical study

Journal of Orthopaedic Surgery and Research(2019)

引用 4|浏览6
暂无评分
摘要
Background The optimal insertion angle for suture anchor insertion has long been of great interest. Although greater tuberosity decortication is commonly performed during rotator cuff repair, the effect of decortication on the suture anchor insertion angle remains unclear. The purpose of this study was to compare the pullout strength of threaded suture anchors inserted at 45° and 90° in decorticated and non-decorticated synthetic bone models. Methods Two kinds of synthetic bones were used to simulate the decorticated and non-decorticated conditions, for which 40 metallic suture anchors were used. Anchors were inserted at 45° and 90° in both decorticated and non-decorticated models and tested under cyclic loading followed by load-to-failure testing. The number of completed cycles, ultimate failure load, and failure modes was recorded. Results In the decorticated model, the ultimate failure load of anchors inserted at 45° (67.5 ± 5.3 N) was significantly lower than that of anchors inserted at 90° (114.1 ± 9.8 N) ( p < 0.001). In the non-decorticated model, the ultimate failure load of anchors inserted at 45° (591.8 ± 58 N) was also significantly lower than that of anchors inserted at 90° (724.9 ± 94 N) ( p = 0.003). Due to the diverse failure modes in the non-decorticated model, specimens with a failure mode of suture anchor pullout were analyzed in greater detail, with results showing a significantly larger pullout strength for anchors inserted at 90° (781.6 ± 53 N) than anchors inserted at 45° (648.0 ± 43 N) ( p = 0.025). Conclusion Regardless of decortication, the pullout strength of anchors inserted at 90° was greater than those inserted at 45°. The clinical relevance is that inserting suture anchors at 90° is recommended due to the significantly larger ultimate failure load in both decorticated and non-decorticated bones.
更多
查看译文
关键词
Suture anchor, Insertion angle, Decortication, Biomechanics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要