Simulations in Terms of Radiation Effects on different BEOL Material Systems

2019 20th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE)(2019)

引用 1|浏览5
暂无评分
摘要
Particle radiation on ground and especially in space is unavoidable. This may lead to unwanted failures in electronic devices due to the continuously downscaling of microelectronic structures. Thinking of the expectation of more than 8000 new launched satellites in the next few years the need of radiation hardened components comes more and more in focus. Due to the high costs of radiation hardened (Rad-Hard) components, the aim is to find commercials of the shelf (COTS) which meets the need for this kind of harsh environment. Beside air and space applications, automotive components have to be Rad-Hard as well. Such components are specially designed and tested for the application in automotive. It is well known that test time in all cases is expensive and time consuming. Furthermore, simulations are more and more desired to decrease test times and allow a deeper look into the physical behavior of components and devices. The influences of materials (heavy metal), metallization layers and thickness of the die and radiation energy of neutrons and gamma radiation and their interactions will be discussed and simulation results concerning technological influences will be shown.
更多
查看译文
关键词
Neutrons,Single event upsets,Silicon,Microelectronics,Metallization,Radiation effects,Integrated circuits
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要