Entropy Generation and Heat Transfer Analysis in MHD Unsteady Rotating Flow for Aqueous Suspensions of Carbon Nanotubes with Nonlinear Thermal Radiation and Viscous Dissipation Effect.

ENTROPY(2019)

引用 27|浏览5
暂无评分
摘要
The impact of nonlinear thermal radiations rotating with the augmentation of heat transfer flow of time-dependent single-walled carbon nanotubes is investigated. Nanofluid flow is induced by a shrinking sheet within the rotating system. The impact of viscous dissipation is taken into account. Nanofluid flow is assumed to be electrically conducting. Similarity transformations are applied to transform PDEs (partial differential equations) into ODEs (ordinary differential equations). Transformed equations are solved by the homotopy analysis method (HAM). The radiative source term is involved in the energy equation. For entropy generation, the second law of thermodynamics is applied. The Bejan number represents the current investigation of non-dimensional entropy generation due to heat transfer and fluid friction. The results obtained indicate that the thickness of the boundary layer decreases for greater values of the rotation parameter. Moreover, the unsteadiness parameter decreases the temperature profile and increases the velocity field. Skin friction and the Nusselt number are also physically and numerically analyzed.
更多
查看译文
关键词
Magnetohydrodynamic (MHD),rotating flow,carbon nanotubes,nonlinear thermal radiation,entropy generation,HAM
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要