Nonlinear Xuv-Optical Transient Grating Spectroscopy At The Si L-2,L-3-Edge

APPLIED PHYSICS LETTERS(2019)

引用 11|浏览97
暂无评分
摘要
Time-resolved transient grating (TG) spectroscopy facilitates detailed studies of electron dynamics and transport phenomena by means of a periodic excitation of matter with coherent ultrashort light pulses. Several current and next generation free-electron laser (FEL) facilities provide fully coherent pulses with few femtosecond pulse durations and extreme ultraviolet (XUV) photon energies. Thus, they allow for transient grating experiments with periodicities as small as tens of nanometers and with element specific photon energies. Here, we demonstrate the element specificity of XUV TG (X-TG) experiments by tuning the photon energy across the Si L-2,L-3-edge of Si3N4. We observe a shortening of the signal decay when increasing the XUV photon energy above the absorption edge. The analysis of the wavelength dependent signal shows that the faster decay is driven by the increase in the charge carrier density. From the decay constants the interband Auger coefficient at elevated temperatures and high electron densities has been determined. Published under license by AIP Publishing.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要