Direct Determination of Cross-Link Density and Its Correlation with the Elastic Modulus of a Gel with Slidable Cross-Links

ACS Macro Letters(2019)

引用 38|浏览3
暂无评分
摘要
The universal relationship between the elastic modulus and the cross-link density of a conventional rubber/gel has been demonstrated experimentally to be inapplicable to gels with slidable cross-links. Herein, we describe the synthesis of slide-ring (SR) gel networks devoid of intramolecular cross-links by the cross-coupling of two differently functionalized polyrotaxanes. The cross-link density was determined from the characteristic UV absorption attributed to the asymmetric cross-linked moiety. The cross-link density was shown to correlate considerably more weakly with the Youngs modulus than conventional gels and rubbers that follow a universal proportional dependence. In addition, even at a similar cross-link density, the modulus appeared to be lower due to a lower density of cyclic components along the threading chain, i.e., the coverage, though the data were limited in the narrow cross-link density range. These results might suggest a considerably lower contribution from the conformational entropy of chains associated with sliding through the cross-links and the counteracting entropy attributed to ring arrangement, though effects of the different persistence length due to the coverage difference could affect the modulus.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要