Exploring Knowledge Graphs in an Interpretable Composite Approach for Text Entailment

THIRTY-THIRD AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FIRST INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / NINTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE(2019)

引用 26|浏览33
暂无评分
摘要
Recognizing textual entailment is a key task for many semantic applications, such as Question Answering, Text Summarization, and Information Extraction, among others. Entailment scenarios can range from a simple syntactic variation to more complex semantic relationships between pieces of text, but most approaches try a one-size-fits-all solution that usually favors some scenario to the detriment of another. We propose a composite approach for recognizing text entailment which analyzes the entailment pair to decide whether it must be resolved syntactically or semantically. We also make the answer interpretable: whenever an entailment is solved semantically, we explore a knowledge base composed of structured lexical definitions to generate natural language human-like justifications, explaining the semantic relationship holding between the pieces of text. Besides outperforming well-established entailment algorithms, our composite approach gives an important step towards Explainable AI, using world knowledge to make the semantic reasoning process explicit and understandable.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要