Controlling competing photochemical reactions stabilizes perovskite solar cells

NATURE PHOTONICS(2019)

引用 269|浏览34
暂无评分
摘要
Metal halide perovskites have become a popular material system for fabricating photovoltaics and various optoelectronic devices. However, long-term reliability must be assured. Instabilities are manifested as light-induced ion migration and segregation, which can lead to material degradation. Discordant reports have shown a beneficial role of ion migration under illumination, leading to defect healing. By combining ab initio simulations with photoluminescence measurements under controlled conditions, we demonstrate that photo-instabilities are related to light-induced formation and annihilation of defects acting as carrier trap states. We show that these phenomena coexist and compete. In particular, long-living carrier traps related to halide defects trigger photoinduced material transformations, driving both processes. Defect formation can be controlled by blocking under-coordinated surface sites, which act as a defect reservoir. By use of a passivation strategy we are thus able to stabilize the perovskite layer, leading to improved optoelectronic material quality and enhanced photostability in solar cells.
更多
查看译文
关键词
Materials for devices,Materials science,Photochemistry,Physics,general,Applied and Technical Physics,Quantum Physics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要