Discovery of Small-Molecule Selective mTORC1 Inhibitors via Direct Inhibition of Glucose Transporters.

Seong A Kang, David J O'Neill, Andreas W Machl, Casey J Lumpkin, Stephanie N Galda,Shomit Sengupta,Sarah J Mahoney,Jessica J Howell,Lisa Molz,Seung Hahm,George P Vlasuk,Eddine Saiah

Cell Chemical Biology(2019)

引用 31|浏览12
暂无评分
摘要
The mechanistic target of rapamycin (mTOR) is a central regulator of cellular metabolic processes. Dysregulation of this kinase complex can result in a variety of human diseases. Rapamycin and its analogs target mTORC1 directly; however, chronic treatment in certain cell types and in vivo results in the inhibition of both mTORC1 and mTORC2. We have developed a high-throughput cell-based screen for the detection of phosphorylated forms of the mTORC1 (4E-BP1, S6K1) and mTORC2 (Akt) substrates and have identified and characterized a chemical scaffold that demonstrates a profile consistent with the selective inhibition of mTORC1. Stable isotope labeling of amino acids in cell culture-based proteomic target identification revealed that class I glucose transporters were the primary target for these compounds yielding potent inhibition of glucose uptake and, as a result, selective inhibition of mTORC1. The link between the glucose uptake and selective mTORC1 inhibition are discussed in the context of a yet-to-be discovered glucose sensor.
更多
查看译文
关键词
mTOR,mTORC1,S6K1,4E-BP1,Akt,GLUT,GLUT1,rapamycin,rapalog,pharmacological inhibition
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要